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ABSTRACT

In the first part of this paper we study in detail the properties of the
divergence operator acting on continuous piecewise polynomials; more
specifically, we characterize the range and prove the existence of a maximal
right-inverse whose norm grows at most algebraically with the degree of the

piecewise polynomials.

In the last part of this paper we apply these results to the p-version of
the Finite Element Method for a nearly incompressible material with
homogeneous Dirichlet boundary conditions. We show that the p-version
maintains optimal convergence rates in the limit as the Poisson ratio
approaches b&. This fact eliminates the need for any "reduced integration®
such as customarily used in connection with the more standard h-version of the

Finite Element Method.
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A RIGHT-INVERSE FOR THE DIVERGENCE OPERATOR IN
SPACES OF PIECEWISE POLYNOMIALS. APPLICATION
TO THE p-VERSION OF THE FINITE ELEMENT METHOD.

Michael Vogelius*

{ 1. Introduction

For many finite element discretizations of p,p.E.'s
estimates of the error rely on a detailed study of the divergence
operator on corresponding sets of piecewise polynomials-éxamples
of this are mixed formulations for the Laplace equation or the

equations of elasticity (cf. [6],[9]) and discretizations of the

Stokes problem (cf. [10]).

Finite element methods in general are based on some partition ;
of the domain and convergent solutions are typically obtained by :
letting the mesh size h tend to 0 using piecewise polynomials of }
some fixed degree (the h-version). Recently a different version

has received quite a bit of attention (cf. [1,3,4,7]), namely the so-called 3

p-version of the Finite Element Method. The p-version is based on a

fixed triangulation and the degree of the piecewise polynomials is :

increased in order to give convergence. :

In section 2 of this baper we analyze the divergence operator

with special emphasis on applications for the p-version, to be
more precise
(i) we characterize the range of the divergence operator

acting on fields that are continuous piecewise poly-

nomials of degree < p+1 on some triangulation of a

domain & (for p > 3).

*Courant Institute of Mathematical Sciences, New York University,
New York, New York 10012

This work was supported by the Office of Naval Research under
Grant No. N00014-81-K0002, and completed at the Mathematics
Research Center, sponsored by the United States Army under
Contract No. DAAG29-80-C-0041.

et A e U AOD  -




et i .. W 4D -

(ii) we show that a maximal right-inverse exists, which
takes values in continuous piecewise polynomial
fields of degree < p+1 , and which has an operator
norm that grows at most algebraically with p.

The first of these two results is by far the easiest, it
may be obtained from a purely combinatorial argument and use of
the Grassmann dimension formula. Since (i) follows very naturally
as an intermediate result in our proof of the second (and much
harder) assertion we shall only give a sketch of the selfcontained
combinatorial argument (cf. Remark 2.1).

The reference [9] contains an explicit construction of a right-
inverse for the divergence operator for piecewise polynomials of
arbitrarily high degree, but the fields defined that way are not
continuous across inter-element boundaries, only the normal
components are.

In section 3 we apply the results (i) and (ii) to a particular
discretization by .the p-version. The continuous model is that of
a nearly incompressible linearly elastic material (Poisson ratio
v A %) with boundary conditions that are homogeneous Dirichlet.

We show that the discrete solution converges at an optimal rate
even when V is extremely close to % ; this is in sharp contrast to
the h-version where one encounters significantly reduced convergence
rates for nearly incompressible materials (we refer to [11l) for a_
more detailed discussion). In [11l]) we relied on the results (i)

and (ii) to analyze the similar problem for the case of natural
boundary conditions on a smooth domain. v

Let D be a bounded polygonal domain in R®", n = 1,2..
Throughout this paper Hk(D) denotes the standard Sobolev space

of functions that have all derivatives of order < X% in 12 (v).




: ’ Whenever no ambiguity is possible the same notation shall also
be used for vector valued functions whose components are in
! Hk(D). Spaces with noninteger exponents are defined by complex

interpolation (cf. [5]). The norm on the space H®(D) is

-]
denoted I"S,D and H3(D) refers to the closure of C:(D)

in H%(D).
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2. A maximal right-inverse for the divergence operator.

Let Q@ be a bounded polygonal domain in ]lz and let I denote
a triangulation of 2 . We assume that I has the property that no .
vertex of a triangle lies in the interior of a side of another.
Before treating piecewise polynomials on the triangulation I
we establish a few preliminary facts concerning polynomials on a
single triangle. 1In what follows To shall always denote the
reference triangle {(x,y)|0 < x, 0 <y, x+y < 1} . g; is the
derivative along the outward normal to aTo and %3 is the derivative
tangential to BTO and counterclockwise.

Lemma 2.1

Let QP*l(x) and RP(x) be two polynomials in x of degree < ptl

and < p respectivelf. Assume that 0 and 1 are zeros of multiplicity
at least 3 for Qp+1 and at least 2 for RP.
There exists a polynomial sp+l(x,§) in x and y of degree : N
< ptl satisfying
(i) sP*l - %ﬁ sP*! = 0 on the two sides
x=0,y=0,
(11) sP*lix,y = QPHlix)

% sP*1(x,y) = RP(x) on the side x+y = 1.

(iii) lsp*llo 7 < cip+1)¥ (1gP*h + IRPY
’
0

0,10,1] 0,10,11' -
with constants C and K that are independent of p,

QP"'1 and Rp .

« ' -
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proof: Since 0 and 1 are zeros of multiplicity > 2 for both

Qp+l and RP we can write

P lx) = x2(1-x02 gP 3 (x)

RP(x) = x2(1-x)2 P74 (x) .

Define Tp+l by

P (x,y) = x%y? P73 () .
Then
(1) P+l -g— ™*1 ~ 0 on the
n
two sides x =0 , y =0 .
(2) Tp+l(x,y) = Qp+1(X) on
the side x+y =1 .
By integration we get
1 l-x
][ (tP*l(x,y))2 ax dy = J x4 @P 3 x0) 2 f v} dy dx
To 0 0
1 1l
.3 j x4 (10 %@ 3 (x0) %ax < L [ (@1 ? ax ,
0 0
i.e.,
p+l p+l .
(3) T .O'To LI ol PRI

Due to the fact that 0 and 1 are zeros of multiplicity at

least 3 for Qp+1, we can also write

Holy ks e
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= x%(1-x)2 %p—é(x)
Define Up+l by

P ix,y) = /7 x%y? (x4y-1) (RP 4 (%) - FP%4(x))

Then
(4) pP*l - 3 uP*l o 0 on the
an
two sides x =0, y =0 .
(s) uP*l = 0 ang

° +1 +1
5 ey = RP(x) - gﬁ ™ (x,y)

on the side x+y = 1.

By integration as before,

WPt < carPy + 12 opHl

0. T, 0,(0,1] a0 Yo,10,1)"

y=1l-x

The standard trace theorem therefore gives

6 1Pt p P+l
(6) v 0.7, < C UR |0'[0’1] + 1 't'To)

for any t > 3/2 .

It is known, and used repeatedly in this paper, that

1P+l 2t P+l
’

0

-for any polynomial Tp+1 of degree < p+l, and any t > 0.

(The reference [4] contains a proof of this inequality on a

il et uc s Sob b SN ek




sguare. By a localization argument one can extend to other
type domains, e.g. triangular). Inserting into (6) and using (3)

we thus obtain

(7 1wPtLh + 1P

A

c, (p+1) 2E (1rP

0, T 0,10,1] 0,10,11’

0

for any t > 3/2.

Finally let

sp+1 - Tp+1 + Up+1

It is then clear from (1), (2),(4) and (5) that sP*l satisfies
the requirements (i) and (ii). The estimate (iii) follows from

(3) and (7).As K we can use any number > 3, o

Lemma 2.2. Let 0P(x) and RP(x) be two polynomials in x of degree
£ P. Assume that 0 and 1 are zeros of multiplicity at least 2 for

1
Qp and RP. Assume furthermore that I Qp(x) dx = 0.
0

There exists a polynomial Sp+l(x,y) in x and y of degree

< ptl, satisfying
. 9 <P+l _

(i) 3s S =

8 <P+l _
T S = 0 on the

two sides x =0, y =0 .

1) 2 P,y = P
3 sp+1( _ P .
Ty X,Y) = R°(X) on the side Xty = 1,

s e s p+l K P (2]
(iii) 1s '0, T, < C(p+1)™ (1Q '0,[0,1] + IR lO.IO,l]) .

with constants C and K that are independent

of p, QP ana RP .
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proof: Define Qp+1(x) = - /7 J QP (s)ds and construct Sp+1(x,y)
1] .

according to the previous lemma with boundary data °p+1 and RP.

This sp+1 has the desired properties. 0

lemma 2.3. Iet T be a triangle two sideé of which lie on the lines

a;x + biy + ¢ = 0, i =1,2. Let P be a pelynomial of the form

Qp(x,y) = (alx + bly + cl) (azx + bzy + "2’ 2 Rp'3 (x,v) .,

where Rp-3 is a polynomial in x and y of degree < p-3. PRPssume

furthermore that

f] Qp(x,y)dx dy = 0.
T
There exists a field g?+1 = (U§+1, Ug+1) of polynomials
of degree < p+l,satisfying

(1) vP* =0 on 3T

(i) vpP*r =gP in T

A p+l K (oP
(iii) 1wy '1,T < C{p+l) " 1Q Yo,7 *

with constants C and K that are independent of

p and ¢°.

B S
(g ",,':"::4‘:_7’,':’3_.. . rar

ey
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Proof: By an affine transformation T can be mapped onto To in

such a way that a)x + bly + cl = 0 goes to x = 0 and a,x + b2y

+ = 0 toy = 0. It therefore suffices to prove the result on

€2
To with Qp given by
QP(x,y) = xy? P 3 (x,y) .

Define Ep+l as follows

X
W§+l(x,y) = j QP(s,y)ds
0
wg+l(x,y) =0 .
This ensures that
W lx,y) = x%y? P 3 (x,y)

v.wP*l = QP ang

(8) 1P < cp+1)? 197 ;

1, T, — 0, 7T

0 0

EP+1 is therefore 0 on the two sides x = 0 and y = 0. To make it
vanish also along the side x+y = 1 we now define an appropriate
correction term. Let Sp+2 denote the polynomial constructed in
Lemma 2.2 with boundary data n-wP*l(x,1-x), -s-wP*!(x,1-x) for the
tangential derivative and the normal derivative respectively (here

we use the fact that JI Qp(x,y)dx dy = 0). Then
T
0

3 oP+2  _ 3 _p+2
ax s )

gp+1(x,y) = EP*I(x,y) - (5 87 %,

N
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satisfies the requirements (i} and (ii). By inteqration it also

immediately follows that

p+l ! < P
ty y=1-x'0, (0,17 < C1°05, T,

Combining this with the estimate (iii) of Lemma 2.2 one finds

9 oPt2 _ 3 oP+2,4} 4 p+2
(9) |(ay ] p ™ S )v l,Tof. C(p+l) " 1s

"o, 7,

K D
< Cip+tl}" 19 ‘0, T,

for any K > 7. The estimates (8) and (9) easily yield (iii).
O
The following lemma characterizes the range of the divergence
onerator for the case of a single triangle and polynomial fields with
homogeneous boundary conditions. In addition it establishes a bound on
the norm of a maximal right-inverse for 9:.. As will be clear
from the proof, the latter is the most difficult.

lemma 2.4. Let T be a triangle the vertices of which have

coordinates (xi,yi), 1 <i <3. Let QP(x,v) be a polynomial in

x and y of degree < p such that QP(x,,y;) =0, 1 <3 <3, and
JJ QP (x,y)dx dy = 0.

i There exists a field QF+1 = (U€+1, Ug+1) of polynomials
of degree < p+l,satisfying

(i) vP*1 =0 on a7

(i) vuP*! = QP in T

css p+l K P
(iii) Mu '1'T§C(p+1) o} 'o,r

with constants C and K that

are independent of p and QP.
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Proof: The lemma is trivial for p < 1, so in the following we
shall always assume that p > 2. LlLet Pp+1 denote the nolynomials
in x and y of degree < p+l and let §p+1 denote Pp+1fﬁﬁl(T)- It

. o S p+l .
is easy to check that the divergence operator maps Pp+1x pP 1 into

the subspace of PP characterized by Qp(xi,yi) =0,1<i <3, and
L] °
JJ oP(x,y)dx dy = 0. The dimension of Pp+1x Pp+1 is (p-1)p. The
T

null space of V- is for p > 4 given by
3

p+2

3 _ 3 _ ,p+2 p+2 _ 2 _p-4 P~4_ pp—4,
{(ay Q7 - 3 @) | xuy) = (ajx+b v+c,)” R™ " (x,¥), R e

| |
i=1
where a;x + b;y + ¢; =0, 1<1i <3, are the

equations for the 3 sides of T . For p = 2,3 the nullspace consists
of 0 only. Hence in general the null space has dimension (p-3) (p-2)/2.

By using the Grassmann dimension formula we now get that the range of

V- must have dimension (p-l)p =~ (p-3) (p-2)/2 = (p+l) (p+2)/2 - 4. :
Since the subspace of PP characterized by Qp(xi,yi) =0, 1<ic<3, )
f and JI Qp(x,y)dx dy = 0 has dimension exactly (p+l) (p+2)/2 - 4, we ?
concluge that V¢ maps ;p+l x ;p+l onto this svace. In other words, ;

L

given QP € PP which satisfies Qp(xi,yi) =0,1<i<3, and
IJ Qp(x,y)dx dy = 0 one can find Up+1, a field of polvnomials of
T z

X degree < p+l, with the properties (i) and (ii).

The estimate (iii) does not follow from the previous argument.

|

i The existence of a bounded maximal right-inverse for any fixed p is
‘ guaranteed, what we do not know is how the norm depends on p.

{

In order to prove (iii) it is certainly sufficient to consider

‘ p>5. Let QF be a polynomial of degree < p which satisfies Qp(xi,yi)= 0,

l<ic<3, and JI Qp(x,y)dx dy = 0. One can always find a polynomial
T

|
|
j

B R e e e

Rt ittt D et o i,
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R® of degree < 5 such that
3,7 (yk (gP-g? =
{
i for 0 < j+k < 2,1 <i <3,
: P_gS -
; (11) J|| @P-ixprax ay = 0 ana <
] T |
{ 5 p
; (12) IR 'O,T < clo 't,T for any t > 3. ?
: Due to (10) and (11), Rs(xi,yi) =0, 1<i <3, and JJ Rs(x,y)dx dy = 0.
!
The combinatorial argument at the beginning of this proof therefore !
i
gives the existence of a field 26 with the properties t
!6 =0 on 3T,
V-gs = r inT and
6 5
(13) IVl S CIRl, o -

Based on (12) and (13) we get

: 1v81

P
vor, o < crof

A

t.T

c(p+1)2t 1gPI

Ia

i 0,T
!

l for any t > 3.

i

Thus it suffices to prove the assertion (iii) for polynomials

oP that additionally vanish up to and including second derivatives at

, the vertices of T. Sucha Qp may, according to Lemma 2.1, be written as
|
{
1]
!

—— ——  c——— o 4w a T R R T
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Pix,y) = (ayx+b,y+ci)2(ax+b,y+c 12 oP 4 (x,y)
Q" {x,y) = (ay 1Y+ & 2 ¥+ cy) Oy Y

2

2 p-4
+ (a2x+b2y+c2) (a3x+b3y+c3) 05 (x,y)

2 2 -4
+ (agx+byy+cy) “lajx+byy+ec) Qg (x,y) ,

where the integral of each term over T vanishes, and the Lz-norm of

each term is bounded by
K p
C(p+l) " IQ IO,T .

An application of Lemma 2.3 term by term now leads to the desired

result. 0

In order to extend the previous result from a single triangle
to the entire triangulation we shall need one more lemma. Let us
first introduce some notation. P[p]'o denotes the set of continuous
functions on @, whose restriction to each triangle is given by a
polynomial of degree at most p. By an internal vertex of I we
understand a vertex which lies in @ (not on 3%) . p[P1/-1
denotes the set of functions, whose restriction to each triangle
is given by a polynomial of degree at most p (no inter-element

continuity requirements), with the additional property that:

R.1. "At any internal vertex (xo,yo) of the trianqulation, where

four triangles come together as in Fig. 1

(i.e., the sides meeting at (xo,yo) fall on two straight lines )

the corresponding values {QE(XO'YO)}2=1 satisfy

3 Q‘i)(xo.yo) = 3 Q‘i)(xo,vo) .o

i even i odd
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T,
Ty (xq0¥g) T
T4
Fig. 1
Lemma 2.5. Let VP be an element of PIP1+~1  There exists

EB € P[3]’ox P[3]'o such that

(i) Vp—V-E3 = 0 at all vertices

of the triangulation I .

. 3 ) K ,.p
(1) 11 o < Clp+1)" v To,q

with constants C and K that are

independent of p, vP .

Proof: Let us consider two triangles placed adjacent to each other

(as in Fig. 2). o

Fig., 2




We easily construct a field g3, given by third order poly-
nomials in each triangle, continuous in 7:75_72, vanishing along
3(?1—3—?;)(the outer boundary) and such that each component has
derivative 0 in the direction n, at the vertex O' and a prescribed

derivative in the direction n, at the vertex 0. If

11 _
LJ =a)p mtannn

o _
[;’ =2 N Y a;n

then
3 _ ) 3 3 3
(14) v-u” = a,, n, Uy + a,, 53— U

in T1 at the _vertex O. Similarly if

—
o
|

= Dby Ny + by, Ny
[b = Db n, + b
1 21 M2 22 N3 ¢
then

3 3 3 3 3
(15) VEJ_ = 1+b21'§ﬁ-2-U2

in T2 at the vertex O.

a2 11
It is easyv to see that the vectors a and b are

22 21
linearly independent except in case
n3 = -nl . Since we have the freedom to prescribe %ﬁ“ QJ at the
2

vertex O, (14) and (15) enable us to prescribe any pair of values

for V-g3(0), one value in T1 and another in T2 » provided nl and n3

are linearly independent. If “1 and n3 are linearly dependent then
the formulas (14) and (15) prescribe the same value for V-gJ(O)

in T1 as well as T2'

15

o

s
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Let us now apply this preliminary result to an internal

vertex O of [.

Fig. 3

First suppose that there exists a pair of adjacent triangles such
that the combined angle is not T7(e.gq. TN and T1 in Fig.3).
By the procedure just described, we may prescribe the same value

for the divergence at O in the two triangles T1 and T2’ Now we

turn counterclockwise and do the same in T2 and T3. Continuing

that way until we reach the last triangle TN and performing a

summation, we obtain the following set of prescribed values:

T, a,

T, a1 + a,
T, @ + a

2 3

TN-I :

TN :

.2 * 2

N-1
aN-1

Since the ayreeesay ) may be chosen arbitrarily, this
clearly gives the possibility of assianing any set of values in

the triangles T, through TN-l‘ By assumption TN and T1 do not

1

have a combined angle of T so we can also prescribe a value ay

in TN and 0 in T1 .This permits us to construct any set

of values for the divergence at O in the triangles T1 through TN.
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The only way there can be no two adjacent triangles with
cozbined angle # 7 is if the vertex is the intersection of two straight

lines (Fig. 1). Taking two triangles at a time as before, we can now

prescribe

8

a; +a

a2 + a3

e e I
s W N

a,

i.e., exactly those sets of values that satisfy

) value(T;) = [ value(T,)
i even i oad

This is precisely the constraint imposed on P[p]"l at such vertices.

For any VP € PIP1+=1 ye are therefore able to find a field u>

(continuous in Q) such that VP - V-g3
vertex and V-g3 = 0 at all other vertices. Our construction

= 0 at a particular internal

has the property that

3 K P

for any K > 2.

By a similar construction we can also obtain a g3 such that
VP-V-g3 = 0 at a particular vertex on 3Q and V-g3 = 0 at all other

vertices. AaAdding over all vertices of I we get the desired field.

We are now finally in a position to prove the main result of

this section.

Theorem 2.1. Let PP denote the space V-('ﬂp+1]'°x ’ﬂp+1]'°).

There exists a linear operator Lp from D P into P[p+1],0 xP[p+1]'°

such that

e ot - W B0 ~

i
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(i) 7‘(Lp vP) = ¢P v vP € pP
.. yo} K P P P
(ii) leV 'l,ﬂ < c(p+l) " tv '0,9 Yy vV €D

with constants C and K that

are independent of p, vP,

Furthermore, there exists Py such that

oP = plpl,-1

. for any p > Py

o

roof: We begin by showing that given VP € pPl+-1 tnere exists
gp+1 € P[p+1]'° x P[p+1]’° such that

*
(16) WP - vegPthr o< ctpenTE P o , t* > 0.

It is sufficient to prove (16) for p > 9. Because of

Lemma 2.5 it obviously suffices to consider vP that satisfy

vP = 0 at all vertices of I and verify that
P_ g.nPtl ~t P
(17) v veu Io,ﬂ < C(p+1) v Io’Q

for some t > 2. Construct a piecewise ninth degree polynomial

v® that vanishes up to and including second derivatives on

all sides of I (and therefore at all vertices) with
P_39
IJ (Vi =-V7') dx dy = 0
T

on every triangle T.This satisfies |69|3,n < CIVPI0 Q°
- ’

Application of Lemma 2.4 separately to each triangle

shows that we can find WP'l e p[P+11.0  p[P+11,0 ypp

vewPtl = yP - 3P
(18)

p+l K P
W7y g s clp+l) ™ IV Yo,a *
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It is possible to determine ¢ such that

e e e

20 = v? ina ,
and ~9
et o< vy, o

Hence there exist polynomials oP+2 of degree < p+2 with

: _ aP+2 -3 ,59
i 18- oP*En, o < e 9, o

\ , < cp+1) 3 WP o

Therefore xp+1 = V0p+2 satisfies

v - q.yP+l -3 P
(19) v? = 2.y IO'Q < C(p+l) 'V'o,n'

Let 'yp** b¢ given by gp+1 = _p+1+,¥p+1' a combination of (18)

and (19} then yields (17) (with t = 3). -
It is easily checked that the inclusion DP € plpl,-1 holds.
*
On the other hand let p, be such that C*(po+1)-t <1

(c*, t* are here the specific constants in (16)) it follows

then directly from (16) that the orthogonal complement of oP
in plpl, -1 contains 0 only, i.e. PP = P[p]"l,for P 2 Py

We now go back to (18); instead of approximating

- [qa), -1
Ve p ol + 9y = max {p,,9)}, we may at this point use

q0+1 c P[q°+1]:o N P[qo+1]l°

the fact that we can find 2 such that

qa+l |
vez? =¢°

and

q°+1 -~
1270 1, o < v’

qptl
Defining gp"'l = !p+1+£ 0" e plP*11,0 plptil.o0 (p_>_qo) we get
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. (20) v.uPtt o VP,
% and
". p+l K P
(21) 1wy g < Clp+l) " 1V o«

In the construction leading to (20) and (21) we assume that

vP e pIPls-1 garisfies VP = 0 at all vertices of I. Applying

; Lemma 2.5 we obtain that (20) and (21) may be satisfied for

any vP e P[p]"l (p 2 qo). Let vap denote the field in

L plP*1),0 » pIP+11.0 yj¢h minimal H'-norm for which (20) holds.

| Then Lp is linear, (i) holds by definition and (ii) follows
from (21). This establishes the existence of an apropriate

operator Lp provided p > gp.and that is obviously sufficient. =]

Remark 2.1. If the domain is simply connected then the divergence

operator acting on P‘p*ll’o x plP+11.,0 has as its null space

3 <P+2 - 9 _ opt2 p+2
g7 877 « - 5z sP s

< p+2}. From the formula for the dimension of the space of C

is a C1 piecewise polynomial of degree
1

piecewise polynomials of degree < g {(g>5) that is given in [8]
one can compute the dimension of this null space in case p > 3
(the vertices that fall at the intersectionof two straight lines plav

a special role in this formula). By the Grassmann dimension formula

ol i aatiA e 7.

one finds that 0P = P[p]'-1 for any p > 3. This arqument also

extends to cover polygonal domains Q that are not simply

connected, still showing that P = p(Pl/=1 ¢ anv p > 3,

i

|
|
|
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Remark 2.2. Let Q2 be an arbitrary bounded Lipsc¢hitz domain.
We now permit a triangulation of @ to have triangles with
one curved side (in common with 3Q).

Assume that any of the triangles with one curved side can be

mapped affinely onto a Lipschitz domain of the form

{(x,y)]0 < x <1, 0<y<g(x)}

L
where g is monotone and satisfies g(0) = 1, g(1) = 0.

With this assumption one may easily check that Theorem 2.1
remains valid also for triangulations of nonpolygonal

domains .

Remark 2.3. The proof of Theorem 2.1 immediately leads to
a similar theorem for fields that satisfy homogeneous Dirichlet
boundary conditions on a polygonal domain. The space

?[P] =1

corresponding to will now be defined through the

two additional requirements:

R.2. "At any vertex (xo.Yo) on 3Q where k triangles,
1 < k £ 4, come together as in one of the cases
shown in Fig. 4 (i.e. the sides meeting at (xoyyo)

fall on two straight lines),

P P
I Qxguyy) = 1 5 Q; (xq.¥q) "

-

P P

LT R N TV e

i S i i

e asiand e

VDR IPV Sy oo
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3. Aoplication to the p-version F.E.M.

In this section we study the behaviog of the p-version of the
Finite Element Method for the case of a nearly incompressible
material. The continuous problem is that of plane strain linear
elasticity on a bounded,simply connected polygonal domain 2.

We furthermore assume that all corners of @ have interior angles
< 27. Formulated in terms of displacements u, =

(uv,l' “v,z)
the continuous problem is

1
(22) -AEv - 13y V(V'Ev) =F in Q,

where F represents an external force (to be specific F is the

external force scaled by 2(1+v)/E). E > 0 denotes the Young modulus

and 0 < v < ¥ the Poisson ratio; the case that v is very close to &

corresponds to a nearly incompressible material. The boundary

ok e

conditions are

(23) u, =0 on 3q . ]

The analysis presented here could easily be extended to the case

et ol oS A i

that homogeneous Dirichlet data is given on part of the boundary

and natural (stress) boundary conditions onthe rest.

- bk b

Solving the boundary value problem (22) and (23) is equivalent to

minimizing the energy expression !
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2 2

1.9
+~2—(a—xvz+ v

w‘w

2 3
(24) ” G v+ (33 V2!

'” F v dx dy
f

- °1
in HY(0). (We minimally assume that F € H 1), the dual of H (2).)

For values of ¢ very close to % (22) and (23) may be viewed as

a penalized version of the Stokes problem

(25) -AU + VP =F and

vy

0 in @, with

U=0 on 30 .

(It is well known that (25) has a unique solution U € ﬁl(ﬂ),

P € Lz(ﬂ)/ {constants} provided F € H'l(Q), cf. [10].)

We shall make use of the following simple estimate

(26)  fu,-ut) o+ ()2 1V, -0, o <ca-2mamg o,

where IPIo Q refers to the norm in the quotient space.
’

Let I ={7i}?=1 be a triangulation of 2 with the property that
no vertex of a trianyle lies in the interior of a side of another.
;[p],o denotes the set of continuous functions, whose restriction
to each tiiangle is a polynomial of degree at most p and whose trace
on 37 vanishes. The finite dimensional problems we consider
are those that arise when the energy expression (24) is minimized in
;(p],o ‘;(pl,o . P > 0. For values of v away from % the finite

dimensional solutions are easily seen to be as good as the best Hl-

approximations to u  from within the spaces plP1.0  plpl.0

v 2
v 1) + I:—Z-v(V'!) J dx dy




The aim of this section is to prove an optimal asymgtotic error

estimate in terms of negative powers of p, which is valid in the limit as

v approaches %. First a simple approximation result.

Lemma 3.1. For any Kk >1 and any ¢ > 0 there exists a constant

c such that
k,€

'k+1+€lll

k,Q

t inf 1v - 0Pl < ¢, _(p+l)
j o o £ 1,0 - k,e
' ' QP € p[P]roxp[P]'O '

e 2
for any p > 0 and any v E’ﬁik(ﬂl N Hl(ﬂ)) .

Proof: see [4] .

Let u, p denote the element of %Ip]’ox $[p],0 that minimizes
’ .
(24) , we shall now prove that u, p converges to Ev at the optimal
’
rate even in the limit as y approaches ). Unlike the result proven

in [11], for the case of a smooth boundary 3 and natural boundary

conditions on all of 3R, the following theorem does not establish
uniformly valid optimal convergence rates. The weaker focrmulatien
is due to the nonsmoothness of the boundary 3Q . ™'en for a t.xas
load F the corner singularities and therefore the smoothness of the

solution v, is likely to depend on y, This means that there are no

W POV T RS

uniformly valid optimal rates, rather the optimal rates depend on V.
It is undoubtedly possible to establish error estimates that exhibit

these optimal rates (depending on v ) but with constants that 3
are independent of Vv .Technically however this introduces a lot of

difficulties that are irrelevant to the main scope of this section,

namely to understand exactly what makes the p-version superior for

nearly incompressible materials.

- — e
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Theorem 3.1. Assume that s > 1 and V € ]0,1/2[. Let u, be
the solution to (22) and (23), and let U, P be the solution
to (25). For any p > 0, gv'p denotes the element in
p(pP1,0 « plpl.0 that minimizes (24).
Given € > 0 there exists Cs,e (independent of V and p) such

that whenever U € S () ,

1 ,1/2
'!v"gv,p'l,g + o) 10 (uy -y, Mg, 0

~s+1+€ 1/2
< cs’e(p+1) Igls"2 + Cc(1-2v) lt-*lo'Q

(the constant C is independent of all parameters).

Proof:. Let T p(v) denote the projection of VvV onto ilp]'OX$[p]’°
Eroo- D= -

in the energy inner nroduct associated with (24) ,Then u =7 (u)
~v.,P v,P = y
and therefore ‘
by, -u, 0y o+ () 10y -u, )
- -v,p 1,0 -2V v =v,p° 0,8
- = %19, - .
2 lu,-Uly gt (TEFHR)IV(e, -, o
1k .
+ig-r Yy oo+ (5 VRS, D0 g
+ 1T (Ue-u)l, o+ () 9T (w-ug) .
v,p = =v 1,9 1-2v v,p = =V 0,2

The operators Tv p are uniformly bounded in the norms
’
1 .,% .
] '1.9+ (Tziv) 1ve( )'0,9 and by using the estimate (26)
we thus conclude

e g+ -~
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1 1/2 go.n -
T B G LA L LY N N L P
1 0 1/2 yo.m -
(27) < Hg-Ty (U0 o+ (5) S IV -y (W) g

s ca-mZam o

similaxr to Lemma 2.2 in [11] (for which we did not use the smoothness

of the domain Q) we get for any v with V.y = 0 that
1 ,1/2 . - i
v - Tv,p(z)ll,ﬂ + (155v) 1v-(y Tv,p(!)) 0,0

< pic)? « inf 1T -1 o)
P Pe plpl 0 3lpl1.0

where Cp denotes the L(Lz.ﬁl)-norm of any maximal right-inverse for
. slpl,0, 5(p1,0

the divergence operator acting on P xp (here we

assume that p> 3 so that v.(P[P1+0x 7[P1:0) 4 0). Theorem 2.1

together with Remark 2.3 shows that we can obtain G c(p+1)¥,ana

as a consequence of this and Lemma 3.1,

- N TP
1V-Ty,p @y atsy) N9 (=T, S
(28)

2K=k+1+€/2
< v
C] t(P+1) i 0

k
provided v € H (@) N !?ll(ﬂ) and V.v = 0 .

The operators Tv,p are uniformly bounded, i.e.,

1
(29) "L‘T\:,p.w'l,n + ('1':7\7)5' =Ty, MG g

< C '-3'1,!}

provided V:v = 0.
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Let HE(Q) denote the space HY(Q)n 1t n {(vivev=0}, r>1.
Since  is simply connected H'(Q) may also be characterized as
“-g; 9, - %—; é) | Oeﬂrﬂ'(ﬂ) n ;12(9)'}, i.e, #(R) is isomorphic to
Hr”'(fl)ﬂ flz(ﬂ). Using the same ideas as in [2] (see also [12]) only

with the biharmonic operator instead of the laplace operator one gets
the following result concerning complex interpolation and the spaces

) nfiZ(:

(Hr-n-l(m nﬁzm)' H t:+1(m 0;12(9))9 - Hr+1+( t:-.r)e(mh ;*2(9)

for any 1 < r <t and 0 < & <1 (even though  is not smooth).
Due to this result and the aforementioned isomorphism we can now

interpolate between (28) and (29) to obtain

y 1
=Ty, p D) oMy TV (-1, Dy g

(30) )
2Ké-(k~1)6 + €/2 :
| < Ck,e,0(ptl) 17014 (x-1)0,0
| 1
i : T
‘ for any 0 < 6 <1 and any Ve Hl”k'l)e({z). Choose k > 4K.5_;l + 1 :
and define 0 = ks_%;:_ « The estimate (30) with U, the solution to (25),
inserted for v then reads
! 1 .k
| 10Ty plW 1) o+ (pg) " 17-U-17, (@) 15 g
(31)
-8+1+¢
hd c's.s(p+1) '9"3,9 .
!
; Combining (27) and (31) we get the desired estimate. a ,
C
!
]
¥
U e —me- - AR Ty S




Remark 3.1. An alternate way to formulate the result of Theorem 3.1

§ is, in light of the estimate (26),

} 1 11/2 yg. .
W0-uy ply,0t (T5)777 1V (L-ny Mg g

-S+1+€ 1/2
< cs’e(p+1) ly_ls'Q + Cc(1-2v) 'P'o,n .

By choosing the penalty parameter ISEV sufficiently large and
minimizing (24) in P[P1¢0 x BIPY/0 4o ¢hyg obtain a solution Y,p
' that converges to U, the solution of the Stokes problem, at the rate

. ~s+1

{p+1) {modulo an €) provided U € K%(Q). This rate is optimal

for a general U € Hs(ﬂ) : if namely

e M gt et ki oo,

~-s+1-8
ly - !jllyﬁ < C(pj+1)
[Pj],o

N P[pj] 0

for some § > 0 and some sequences vy € P '

Pj+1’,pj SA<w, ij ®, then one could conclude (cf. [4]) that

s+t

€ Hl.oc

[[=

ki e s s rit ik LA

(75)

1 for any t < 6 and any triangle Ti € L. (ye Hisg(Ti) means that

U € HS*t(x; on ali compact subsets K of T,.)

s amdoa

Remark 3.2. Whether one thinks of Uy,p 2 an approximation to the
displacement for a nearly incompressible material or as an approxima-
tion to the solution of the Stokes problem, the behavior of the error
is remarkably different from that of more standard finite element

discretizations. If Ih denotes a triangulation of mesh size h and

POTSRPE RS W DY T PIFRY

of some fixed degree for decreasing values of h, then it is well
known that the convergence rates obtained this way are not optimal as

vV approaches %, for piecewise linear functions there is no conver-

‘gence at all. We refer to the introductipn of [11] for more details.

|
]
|
|
i one minimizes (24) in the set of continuous piecewise polynomials
!
{
!
!
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